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The dynamics of an interface separating the two coexistent phases of a binary system in the
presence of external fluctuations in temperature is studied. An interfacial instability is obtained
for an interface that would be stable in the absence of fluctuations or in the presence of internal

fluctuations.

Analytical stability analysis and numerical simulations are in accordance with an

explanation of these effects in terms of a quenchlike instability induced by fluctuations.

PACS number(s): 05.40.+j, 68.10.Cr

I. INTRODUCTION

The study of the effects of fluctuations on interfacial
instabilities under nonequilibrium conditions [1-9] con-
stitutes an active field of research both experimentally
[10-14] and theoretically [15-21]. The amplification of
fluctuations seems to be an important ingredient in the
explanation of phenomena such as secondary fingering
in Hele-Shaw fingers [9], instabilities in Rayleigh-Benard
convection [20] and Taylor-Couette flow [21], and direc-
tional solidification and dendritic growth [10-19]. Never-
theless, a theoretical framework which includes the effects
of fluctuations on instability dynamics is only starting to
be developed. Moreover, there has been some theoret-
ical work in the context of external noise on spatially
extended systems [22-25] in the direction to explain the
discrepancies between the experimental and theoretical
results. First, it has been predicted a shift in the transi-
tion point of the Swift-Hohenberg [22,23] and Ginzburg-
Landau models [23,24]. It has also been discussed the
existence of an instability point induced by noise [25].

In fact, studies on several systems have shown that
in most cases the intensity of thermal noise is not large
enough to account for the observed dynamics [16,20,21],
so other sources of noise (like inhomogeneities or exter-
nal fluctuations) have to be invoked. In any case external
fluctuations can be imposed on a system through a con-
trol parameter and, in a certain degree, are unavoidable
when a system is kept out of equilibrium. In this context,
there are some experiments in which isolated or periodic
heat pulses [11,12] or modulation of some other parame-
ter [13,14] have been employed. Also, the introduction of
fluctuations in a experimentally controlled way seems to
be an important step in order to clarify the role of noise.

In a problem of interfacial stability, the state of the sys-
tem is usually controlled by the value of a suitable control
parameter. In the usual case the relevant problem is the
morphological stability of a planar interface given a fixed
and constant value of the control parameter. Neverthe-
less a quench, that is a sudden change in the value of
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the control parameter, leads the system to evolve to a
different state, and this evolution can affect in several
cases the transient stability of the interface. For exam-
ple, in a directional solidification problem, where after a
sudden change in the pulling velocity the system evolves
to a cellular pattern, the dynamical evolution of the con-
centration profile determines the periodicity of the first
unstable mode of the interface [18,26]. In the case of a
binary mixture, with an interface separating two phases,
after a quench in temperature the final equilibrium state
is a flat interface separating the two coexisting phases,
but the evolution to this state induces a transient inter-
face instability. [27]

Now we are interested in the effects of temperature
fluctuations on the morphological stability of the in-
terface separating the two phases of a binary system.
The experimental situation we are thinking about cor-
responds to a system that is kept at a given temperature
T near the critical point T, by an external device, in
such a way that this temperature fluctuates around its
mean value Ty. These fluctuations are external, in the
sense that are caused by the experimental setup and do
not correspond to the thermal fluctuations of the binary
system.

In Sec. II of this paper we obtain a Ginzburg-Landau
model for the dynamics of a binary mixture in the pres-
ence of external fluctuations in temperature. These fluc-
tuations appear as a multiplicative noise in the equation
and drive the system to a new nonequilibrium state with
a stable interface. The interesting point is that such dy-
namics, like in the case of a quench, does induce the
transient appearance of an interfacial instability. This is
shown in Sec. III, where we perform a stability analysis
of the interface separating the two phases of the mix-
ture. These results should apply on an equal basis to
any system governed by an equation of the Ginzburg-
Landau type, with a phase transition with conserved or-
der parameter, in which external fluctuations are present
in the corresponding control parameter. In Sec. IV we
present numerical simulations of the model, obtaining a
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good agreement with the theoretical analysis. The con-
clusions are presented in Sec. V.

II. MODEL

We start from the
Ginzburg-Landau equation,

conserved time-dependent

0:e(x,t) = MV?[—re(%,1) + ué(x,t)® — kVZE(x,1)] ,
(2.1)

where ¢ is the local concentration, M is the mobility, and
r, u, and k are phenomenological parameters. Near the
critical point T, the parameter r is usually asumed to be
linear in temperature in the form

r(T)=a(T.-T) . (2.2)
This kind of equation has been widely used for the study
of the dynamics of first order phase transitions with con-
served order parameter [28], and in the context of binary
mixtures was introduced by Cahn and Hilliard [29]. In
the clasification of Hohenberg and Halperin this is known
as the model B of critical dynamics [30].

In an experiment the temperature T’ can be externally
imposed on the system. In such a situation T acts as
a control parameter. When it is externally changed the
system gets different equilibrium values for the bulk con-
centrations. For a temperature below the critical point,
the equilibrium situation corresponds to two coexisting
phases with the usual kink concentration profile in the
normal direction to the interface, which is flat and mor-
fologically stable.

We now consider local fluctuations in temperature in
the following way:

T(x,t) = To + 0T (%,1) , (2.3)

0T (%,1) is a stochastic field with zero mean and variance
(6T?) that represents the fluctuating variations of the
local temperature. Spatial and temporal correlations in
the temperature field are given by the correlation length
A and the correlation time 7, which should be finite but
that will be assumed to be smaller than the typical scales
of the system. In this limit correlations of éT" could be
written in the form

(8T (%, E)6T (X', 1)) = 2&6(% — x')8(F — T'), (2.4)

where & ~ 7A%(§T?), d being the dimension of the system.
In spite of using Eq. (2.4), a finite but small correlation
length will be implicitly assumed through the employ of a
lattice in the numerical calculation. This does not change
any fundamental point of our analysis. We see that exter-
nal thermal fluctuations appear in the Ginzburg-Landau
equation (2.1) in the coefficient that multiplies the linear
therm around its mean value ro = a(T. — Tp). Fluc-
tuations coming from this term are thus multiplicative,
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which physically means that are coupled to the state of
the system.
With the changes of variables

()",
Mr?
k

(u)1/2_
c=|— c,
To

we are lead to the following dimensionless equation:

t="210F (2.5)

dyc(r,t) = VZ[—c(r,t) + c(r,t)® — VZ¢(r,t)]
—V2[(r, t)e(r, t)],

where the field {(r,t) = 6T /(T.—1Ty) is taken as Gaussian
fluctuations with zero mean and correlation given by

(E(r, )E(x', 1)) = 2e6(r — 1')6(t — t').

Due to the multiplicative character of the noise term
in Eq. (2.6), it has a nonzero mean value. This equation
can be used now to study the stability of the interface
separating the two phases of the system in the presence
of external fluctuations. The usual derivation of the dis-
persion relation for the Mullins-Sekerka instability [31]
assumes a constant ramp for the concentration profile in
time. In the next section we obtain that these fluctua-
tions change the concentration profile from the usual kink
solution of a stable interface to a ramp structure which
decreases in time. This ramp is analogous to what would
be obtained after a quench between two temperatures be-
low the critical point [27], and induces a flux of matter
across the interface which makes the interface unstable.
Note that the interface would be stable in the presence of
internal fluctuations, which would appear as an additive
noise in the model, or in the absence of fluctuations.

(2.6)

(2.7)

III. THEORETICAL ANALYSIS

The formal integration of Eq. (2.6) gives the following
expression for the concentration c,(t + At) at a point p
[32]:

cu(t + At) = c,(t) + AtV2, [—(1 + D)ca + ¢ — V2 co]
+V2 caXal(t), (3.1)

where D = 4¢/(Az)* and X,(t) = 3—/%_5—;‘—‘3 0n. 0y are
Gaussian random numbers with zero mean and variance
equal to 1. The presence of a multiplicative noise term
gives rise to two terms in Eq. (3.1). The one proportional
to D is the so-called Stratonovich term. This contribu-
tion corresponds to the mean value of the noise term of
Eq. (2.6), which is nonzero owing to the multiplicative
character of the noise. The second term introduced by
the multiplicative noise, the last one in Eq. (3.1), is a
random term with zero mean.

By inspection of Eq. (3.1) we see that the Stratonovich
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term gives rise to an increase in the coefficient of the lin-
ear term. In the absence of the random number term, the
corresponding bulk values for the concentration would be
Ceq = £v/1+ D. The presence of the random number
term simply corrects these concentration values c.q to
lower values. We conclude that the effect of the noise is
equivalent to a quench AT in temperature, proportional
to the amplitude of the external fluctuations. The sys-
tem, that is initially placed at the concentration values
+1 has to evolve to the new concentration values Fccq.
Then, a flux of matter will be generated through the in-
terface in such a way that very close to the interface the
concentration should take very shortly the values *c.q.
That will lead to the appearance during a certain time
of a ramp in the concentration profile and, as a result,
an interfacial instability is expected to occur. The final
nonequilibrium steady state generated by the noise cor-
responds to a kink solution with bulk values c.q. It is
worth mentioning that the change in the concentration
value c.q associated to a fix quench is larger near the
critical temperature. In fact, it could be calculated that
D is proportional to AT/(T. — Tp).

In Fig. 1 we present numerical results obtained from
Eq. (3.1) for the concentration profile of a planar interface
separating two coexisting phases with initial concentra-
tion values £1. After a short transient, we obtain a ramp
structure. In this figure the results for two different cases,
with and without the random number term, are shown.
We obtain that the ramps are qualitatively similar, but
the slope is lower in the second case.

In view of the above discussion, we expect that the
effects of the noise on the interfacial instability come es-
sentially from the Stratonovich term in Eq. (3.1) and that
the random term will not introduce any new relevant ef-
fect, apart from numerical corrections. Therefore in the
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FIG. 1. Profiles cp(y) for time t = 25 and intensity
€ = 0.004. Solid line corresponds to Eq. (3.1); dashed line
corresponds to Eq. (3.2).

following analysis we will employ Eq. (3.1) without the
random term:

cult + At) = eu(t)
+AtV2, [—(1 +D)cq +¢2 —VZE co|. (3.2)

The Cahn-Hilliard equation associated to Eq. (3.2) is

% = Vz(—cﬁqc +c® — Vo).
One of the ingredients of the derivation of the dispersion
relation corresponding to Eq. (3.3) is the assumption of
a dynamic expression for the concentration profile of a
planar interface, c,(y,t). To do so, first we study the
temporal evolution of this magnitude numerically using
Eq. (3.2). In Fig. 2 we present the results for € = 0.004.
We obtain that the ramp decreases in time. We can write

(3.3)

cp(y,t) = co(y) + u(y, 1), (3.4)

where co(y) is the equilibrium concentration profile, the
kink solution:

co(y) = ceq tanh (f;%y) .

By substituting Eq. (3.4) in Eq. (3.3) we obtain, up to
linear order in wu:

(3.5)

7]
i 2c§qV2u.

ot

This is a diffusion equation with the boundary condi-

(3.6)
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FIG. 2. Temporal evolution of the concentration profile
from Eq. (3.2) for ¢ = 0.004 at t = 25,100,200, 300,400.
Dashed line is the kink solution of the deterministic system.
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tions u(0%,t > 0) = 0, u(+oo,t) = F(ceq — 1) and
gﬁ(ﬂ:oo,t) = 0. The exact solution of Eq. (3.6) with
Y

appropriate initial conditions has been obtained in Ref.
[27]. Near the interface, we can write

cp(y,t) ~ co(y) — At)y

for ye[—L(t), L(t)], where A(t) is the slope at the origin:

(3.7)

Ou(y,t) Ceg =1 10
At) = ——= = ——t . 3.8
) Oy |y—0 CeqV2m (3.8)

In Fig. 3 we present the comparison between c,(y) ob-
tained from Eq. (3.2) and our theoretical assumption,
Egs. (3.7) and (3.8), for different times. We obtain a
good accordance.

To determine the dispersion relation, first we derive a
macroscopic model from the mesoscopic model, Eq. (3.3).
The macroscopic model consists of three equations. The
first one is the diffusion equation for d¢(r,t), the devia-
tion of the concentration profile with respect to the flat
interface:

de(r,t) = c(r,t) — cp(y,t) = c(r,t) Fceqg + A(t)y, (3.9)

where in Eq. (3.9) we have taken the limit of sharp in-
terface [33] for c,(y,t) and F applies to each bulk phase,
namely, A and B, respectively. The equation for dc(r,t)
is

260(1‘, t) = 2¢2,V?éc(r, ).

5 (3.10)

The second equation is associated to the boundary

1.5 T
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FIG. 3. Comparison between the concentration profiles
¢p(y) from the numerical integration of Eq. (3.2) (solid lines),
and the approximation given by Eq. (3.7) (dashed lines), for
€ = 0.004 and t = 25,100.
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conditions at the interface. This is the so-called Gibbs-
Thomson equation, which relates the deviation of the
concentration at the interface owing to the local curva-
ture K. From Eq. (3.3) we obtain [34]

g

int —
3
4cl,

de(r, t)| K, (3.11)

3 Ceq
and co(y) is given by Eq. (3.5). Finally, the third equa-
tion is the continuity equation, which yields the motion of
the interface due to an imbalance of fluxes. The normal
velocity to the interface v is

where 0 = f(dCS—z(;”))zdy = 2¥2¢3 s the surface tension

2eqv =10+ (Jp — Ja)lint, (3.12)

where 11 is the unitary vector normal to the interface di-
rected toward the B phase. J4 and Jp are the fluxes
[J = —2¢2,Ve(r,t)] when one moves toward the interface
from the A and B phases, respectively. To do the stabil-
ity analysis, one considers a perturbation of the planar
interface h(z,t) = hy(t) exp(ikz) where k is the wave
vector of the perturbation and looks for a solution of the
form:

de(r,t) = deo(t) exp(Fqy)h(z, t).

By substituting Eq. (3.13) in Eq. (3.10) and using
the usual quasistatic approximation (8éc/8t = 0) [7]
we obtain ¢ = k. Furthermore, to determine dco(t),
we substitute Eq. (3.13) in the Gibbs-Thomson rela-
tion and we use a linearized expression for the curvature
K = hge = —k2hy exp(ikz):

(3.13)

Sco(t) = —4—;73—18 +A(t). (3.14)

eq

Finally, by taking into account that v = 9Oh(z,t)/0t =
(dhg /dt) exp(ikx), we could write the continuity equation
as

Ldhe _ 0 45 2ceq A(t)k.

he i 2c2, (3:15)

By using Eq. (3.8), the integration of Eq. (3.15) gives
(3.16)

9 .3 4(ceg — 1), 172
hkNeXp [—@k t+ W’Ct / .

Equation (3.16) is one of the most important results of
this paper [35]. We obtain that apart from the usual sta-
bilizing mechanism of surface tension, associated to the
term proportional to k3t in the exponential, there is a
destabilizing mechanism, associated to the term propor-
tional to kt'/2. This last term is zero when there are
no external fluctuations acting on the system. Further-
more, the effect of the destabilizing mechanism decreases
in time. Then, the result implies that a stable interface
in an equilibrium state would become unstable if an ex-
ternal noise acts on it and the system would evolve to
a new nonequilibrium steady state. This result is dif-
ferent from the usual Mullins-Sekerka instability which
gives for long wavelength a purely exponential growth
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in time for the linear regime. In a real experiment, the
gradients of concentration are reduced with time and for
long times the interface would become finally stable as
we have obtained in Eq. (3.16). Additionally, we could
define a crossover time between the two different regions,
tc, as the maximum of Eq. (3.16):

2
(/2 = g, |2 (Cea “ Decq; o
s g

We obtain that t. increases with the perturbation
wavelength.

(3.17)

IV. NUMERICAL RESULTS AND DISCUSSION

We have performed simulations of Eq. (2.6) in a two di-
mensional lattice of L, = 112 and L, = 400 with a mesh
size Az = Ay = 0.5 and At = 0.001. In Fig. 4 we present
the evolution of h; given by Egs. (3.1) and (3.2) with
an initial perturbation h;(0)=10 Az and wave number
k = 0.112. Initially the concentration of the two phases
is &1 and then we apply an external noise of different
intensities. The results (a) and (b) of Fig. 4 correspond
to the numerical integration of Eq. (3.2) for ¢ = 0.003
and ¢ = 0.004, respectively, while (c) corresponds to the
numerical integration of Eq. (3.1) for ¢ = 0.004. In the
three cases the system is unstable during a transient, in
accordance to the theoretical result of Eq. (3.16), indi-
cating that the mechanisms drawn in Sec. III are correct.
However the actual evolutions are quantitatively differ-
ent in (b) and (c), in spite of corresponding to the same
value of €. This disagreement should come from their
different equilibrium values ceq. In fact, results from Eq.
(3.1) should be compared to the numerical integration of

5.4 T T T

4.6

0 100 200 300 400

t

FIG. 4. Temporal evolution of hy from the numerical inte-
gration of Eq. (3.2) for (a) e = 0.003, (b) € = 0.004, and (d)
€ = 0.0026; and Eq. (3.1) for (c) € = 0.004. The solid lines
correspond to a fit given by Eq. (4.1).
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TABLE 1. Numerical and theoretical values of parameters
C; and C;, for cases (a) and (b) of Fig. 4.

€ C; (theor.)| C: (numer.)|C: (theor.)| Cz (numer.)
0.003 (a)| 0.00073 0.00074 0.015 0.019
0.004 (b)| 0.00077 0.00079 0.020 0.025

Eq. (3.2) for a different value of € chosen to give the same
value of ceq. We show as (d) in Fig. 4 the evolution of
Eq. (3.2) for € = 0.0026, for which c.q = 1.08 as in case
(c). The agreement between both results is quite good.
In Fig. 4 we also include a numerical fit of an expression
of the form:

hk = Co exp[—Clt + Cz(t - to)l/zl, (41)
where ty has been included to take into account the initial
transient in whiclk the ramp is formed. In Table I we
present the numerical values of C; and C5. Furthermore,
we include the theoretical values of C; and Cy obtained
from Eq. (3.16) corresponding to the cases (a) and (b) of
Fig. 4.

V. SUMMARY

In summary, we have introduced external tempera-
ture fluctuations in a system constituted by two phases
separated by an interface. These fluctuations appears
as a multiplicative noise in the corresponding Ginzburg-
Landau equation. The interfacial stability analysis shows
that, apart from the usual stabilization term due to sur-
face tension, there is a transient term that acts as a desta-
bilizing mechanism and it is due to the external fluctu-
ations. This theoretical result has been corroborated by
numerical simulations of the model. It would be of in-
terest to consider the effect of fluctuations of the type
considered in this paper in the case of domain growth in
phase separation.
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